
Sec. 8 Symbolic P.easoninp Approaches Appendix B 

problem thee lie ahead (lQl1. They identify several serious deficiencfes of 

current systems- For example. termination crrterfa are still poorly understood. 
Although INTEEIFIST can diagnose sinultaneous diseases, it also pursues all 

ebbnormal f indir.gs to completfoc, even though a clinician often ignores minor 
unexplained abnormali ties if the rest of a patient's clinical status is well 

understood. In addition, although some of these programs now cleverly mimic 
some of the reasoning styles observed in ez.z.erts [143,[48], it is less clear how 

to keep the systems from abandoning one hypothesis and turning to another one as 

900~ as new information suggests another possibility. Programs that operate 
this way appear to digress from one topic to another - a characteristic that 

decidedly alienates a user regardless of the valic!itp of the final diagnosis or 

advice. 

9 Conclusicns 

This review has shown that there sre two recurring issues to confront in 
considering the field of computer-based clinical decision caking: 

(I) Bow can we design systems that reach better, more reliable decisions in 2 
broad range of applications, and 

(2) Bow can we more effectively encourage the use of suth systems by physicians 
or other intended users? 

We shall summarize by reviewing these points separately. 

Performance Issues 

Central to assuring a program's adequate performsace is a matching of the 

nos t appropriate technique with the problem domain. I!e have seen that the 

structured logic of clinical algorithms can be effectively applied to triage 

functions and other primary care problems, but they would be less naturally 

matched with complex tasks such as the diagnosis and management of acute renal 

failure. Good statistical data may support an effective Bayesien program in 

setrings where diagnostfc categories are smll in number, non-overlapping, and 

well-defined, but the lack of higher level docain knowledge limits the 

effectiveness of the Rayesian approach in more complex patient management or 

diagnostic environments. A mathematical approach may support decision making in 

certain veil-described fields in wb%Ch observations are typically quantified, 

and related by functional. expressions. These examples, and others, demonstrate 

the the need for thoughtful. consideration of the technique most appropriate for 

managing a clinical problem. In general the sirplest effective methodology Js 
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to be preferred, but acceptability issues must also be considered as discussed 
belcv. 

It is also always appropriate to ask whether computer-based approaches are 

needed at all for a given decision making task. The clinical algorithm 

developers, for example, have almost uniformly discarded the machine, and 

Schwartz et al. pointed out that a useful decision analysis can often be 

accomplished la a qualitative manner using paper and pencil [87]. 

Finally, it is important to consider the extent to which a program's 
"understanding" of its task domain will heighten its performance, particularly 

in settings where knowledge of the field tends to be highly judgmental and 

poorly quantified. We use the term "understanding" here to refer to the degree 

of judgmental or structural knowledge (as opposed to data) that is contained in 
the program. Analyses of human clinical decfsion making [141, [4g? suggest that 

as decisions move from simple to complex, a physician's reasoning style becomes 
less algorithmic and more heuristic, with qualitative judgmental knowledge and 
the conditions for invoking it coming increasingly into play. It is likely that 
medical computing researchers will similarly have to become "!;nowledge 
engineers" ill the sense that they will look for effective ways to natcb the 
knowledge structures that they use to the cOmplexity of the tasks they are 
undertaking. 

Accentability ISSueS . 
A recurring observation as one reviews the literature of computer-based 

medical decision making is that essentially none of the systems has been 
effectively utilized outside of a research environment, even when -- i_cs 

performance has been shown to be excellent! --P-b This suggests that it may be an 

error to concentrate our research effort primarily on improving the decision 
making performance of computers when there is evidently much more required 

before these systems will have clinical impact. It iS tempting to conclude that 

the biases of medica!. personnel against computers are so strong that systems 
will inevitably be rejected, regardless of performance, and in fact there are 
some data to support this view (991. However, we are beginning to see examples 
of applications in which initizl resistance to automated techniques has 

gradually been overcome through the incorporation of adequate syster! benefits 
[113]. 

Perhaps one of the most revealing lessons on this subject is an observation 
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regarding the system of ?fesel et al. that tre described earlier (641. Despite 

documented physician resistance to clinical algorithms in other settings [?&I, 
the physicians in Yesel's study eccepted the guidance of protocols for the 

management of chemotherapy in their cancer patients- It is likely that the key 

to acceptance in this instance is the fact that these physicians had previously 

had no choice but to refer their patients with cancer to the tertiary care 

center in Birmingham where all complex chemotherapy w2s administered. The 

introduction of the protocols permitted these physicians to undertake tasks that 

thev had previouslv been unable to do, and it simultaneously allowed maintenance -- ---- 
of close doctor- patient relationships and helped the patients avoid frequent 

long trips to the center. The motiv2tion for the physician to use the system is 

clear in this case- It is reminiscent of Rosati's assertion that physicians 
will fir st welcome ccmputer decision aids when they become aware that colleagues 

who are using the machine have 2 clear advantage in their practice [811. 

A heightened awareness of "human engineering" issues among medical 

computing researchers is also apt to help improve acceptance of computers by 
physicians. Fox has recently reviewed :tis field in..detail [ ie]. The issues 
rtnge from the mechanics of interaction at a computer terminal to program 
charscteristics designed to make the system appeer as a tool for the physician 
rather then a dogmatic advice-giving machine. 

Adequate attention must also be given to the severe time constraints 
perceived by physicians. Ideally they would like programs to take no more t'ne 4. 
than they currently spend when accomplishing the same task on their own. Time 

and schedule pressures are similarly likely to explain the greater resistance to 

automation among interns and residents than among medical students or przcticing 
physicians in Startsman's study [99]. 

Finally it must be noted that acceptability issues should generally be 

considered from the outset in 2 system's design because they nay dictate the 

choice of methodology as much 2s the tzsk domain itself does. The role of 
formal knoeledge structures to facilitate expl2nation capabilities, for example, 
fmy argue in favor of using symbolic re2soning techniques even when a somewhat 

less complex methodology might have been adequate for the decision task. 

In summary, the trend towards increased use of knowledge engineering 

tech.niques for clinical decision programs has been in response to desires for 
both improved performance and improved acceptance of such systems. As greater 
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evner:cnce 1s gained v!ith these techniques and they become better known 

throughout the medical coo~uting ccmmunity, it is likely thet we will see 

increasingly powerful unions between symbolic reasoning and the alternate 

nethodolcgies we have dFscusaed. Cne lesson to be drawn lies in the recognition 

that there is basic computer science research to be done in medical computing, 

and that the field is more than the application of established computing 

techniques in medical domains. 
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TUE ART OF ARTIFICIAL INTELLIGEYCE: 

X. Themes and caee studies of knowledge eneineering 

Edward A. Feigcnbaum 

Department of Computer Science, 
Stanford University, 

Scanford, California, 94305. 

Abstract 

The knowledge engineer practices the art of 
bringing the principles and tools of AL research 
CO bear on difficult applications problems 
requiring experts’ knowledge for their solution. 
The technical issues of acquiring this knowledge, 
representing it. and using it appropriately to 
construct and explain lines-of-reasoning, are 
important problems in the design of knovledge- 
based systems. Various systems that have achieved 
expert level performance fn scientific and medical 
inference illuminate the art of knowledge 
engineering and its parent science, Artificial 
Intelligence. 

INTRODUCTION: AN EXlUlPLE 

This is the first of a pair of papers that 
vi11 exnnlne emerging themes of knovledge 
engineering, illustrate them with case studies 
dravn from the vork of the Stanford Heuristic 
Programming Project. and discuss general issues of 
knovledge engineering art and practice. 

Ler me begin vith an example nev to our 
workbench: a system called PUFF. the early fruit 
of a collaboration betvean our project and a group 
dC the Pacific Medical Center WC) in San 
Francisco. 

A  physician refers a patient to PnC’s 
pulmonary function testing lab for diagnosis of 
posstble pulmonary function disorder. For one of 
the tests, the pacienr inhales and exbalcs a fev 
t imea in a tube connected to an 
instrument/computer combination. The instrument 
acquires data on flow rates and volumea, the so- 
called flov-volume loop of the patient’s lungs and 
airvays. The coapucer maasures cettaln parameters 
Of the CUNC and presents them to the 
diagnostician (physician or WFF) for 
interpretation. The diagnosis is made along these 
1 ines : normal or diseased; restricted lung disease 
or obstructive airvays disease or a combination of 
both; rhe severity; the likely disease type(s) 
(e.g. emphysema, bronchitis. etc.); and ocher 
factors important for diagnosis. 

PUFF is given not only the measured data but 
also certain items of information from the pattent 
record, e.g. sex. age. number of pack-years of 
cigarette smoking. The task of the PUFF system is 
to infer a diagnosis and print it out in English 
in the norma medical summary tform of the 
interpretation expected by the referri-rg 
physician. 

Everything PUFF knovs about pulmonary 
function diagnosis is contained in (currently) 55 
rules of the IF...THEN... form. No textbook of 
medicine current 1 y records these rules. They 
constitute ehe partly-pub] ic, partly-private 
knovledge of ‘* an expert pulmonary physiologist at 
PMC. and vere extracted and polished by project 
engineers vorking intensively vitb the expert over 
a period of time. Here is an example of a PUFF 
rule (the unexplained acronym refer to vorfous 
data measurements): 

------------------------------------------- 

RULE 31 

SF: 
1) The severity of obstructive airways 
disease of the patient is greater than or 
equal to mild, and 
2) The degree of diffusion defect of the 
patient is greater than or equal to mild. 
and 
3) The tlc(body box)observed/predicted of 
the patient is greater than or equal to 110 
and 
4) The observed-predlctcd difference in 
rv/tlc of the patient is greater than or 
equal to 10 

THEN: 
1) There is strongly suggestive evidence 
(.9) that the subtype of obstructive airways 
disease is emphysema. and 
21 It is definite (1.0) that “CAD. 
Diffusion Defect. elevated TLC, and elevaLed 
RV together indicate emphysema.” is one of 
the findings. 

----------------------------------------------- 
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Onr hundred cases. carefully chosen co span 
thr Klriccy of disease scotes oith sufflcienc 
rxrnplary tnformatton for each, were used to 
exccacc the 55 rules. As the knowledge emerged, it 
was represented in rule form. added co the system 
anti rested by running additional cases. The 
expert was sometimes surprised, sometimes 
frustrated, by the occasional gaps and 
inconsistencies in the knowledge. and the 
incorrect diagnoses chat were logical consequences 
of the extstlng rule set. The interplay between 
knowledge engineer and expert gradually expanded 
rhe set of rules to remove most of these problems. 

As cumulation of techniques in the art 
demands and allows. a new tool was not invented 
when m  old one vuuld do. The knowledge engineers 
puIIed out of their toolkit a version of the M ’YCIN 
system (to be discussed later). with the rules 
about infectious diseases removed. and used it as 
the inference engine for the PUFF diagnoses. Thus 
PUFF, like HYCIH. fs a relatively simple backuard- 
chaining inference system. It seeks a valid line- 
of-reasanfng based on its rules and rooted in the 
tnstrumenc and patient data. With a little more 
work at fitting some existing tools together, PUFF 
will be able co explain this line-of-reasoning. 
juac as NYCIN does. 

As it is, PUFF only prints out the final 
tncerprecation. of which the following is an 
example: 

PAT I ENT DATA : 
The degree of dyspnea: HODERATELY-SEVERE 
The severity of coughing: MILD 
Sputum production MODERATELY-SEVERE 
ihe number of pack-years of smoking: 4 
referral diagnosis: BRONCHITIS 
KVC/IVC-predicted: 80 
RVJRV-predicccd: 191 
FVC/FVC-predicted: 87 
TLC(body box)observed/predicted: 127 
Predicted FEVl/FVC: 83 
TLC(DLCO)observed/predicted: 83 
FEVl lFVC ratio: 50 
RV/TLC Observed-Predicted: 21 
HHF/hHF-predicted: 19 
the DLCOIDLCO-predicted: 48 
The slope (FSO-obs-F25-obs)/FVC-obs: 19 

DECREE OF OBSfRUCTIVE AIRWAYS DISUSE: 

om degree by SLOPE: (~~DE~ATELY-SEVERE 
700) 
OAD degree by MMF:  (S&WE 900) 
OAD degree by FEV1: (MODERATELY-SEVERE 
700 1 

Ft!lhL OAD DECREE: (MODERATELY-SEVERE 
910) (SEVERE 900) 
so conflfcc. Final degree: 
(YODEPATELY-SEVERE 910) 

Obstruction fs indicacrd by curvature of 
the flow-volume loop. 
Forced Vital Capacity is normal and peak 
flow rates are reduced. suggesting 
airway obstruction. 
Flow race from 25-75 of expired volume is 
reduced, indfcating severe airway 
obacruccion. 
MD. Diffusion Defect, elevated TLC, and 
elevated RV together indicate emphysema. 
OAD. Dfffusion Defect. and elevated RV 
indicate emphysema. 
Change in expired flow rates following 
bronchodllation shows chat there is 
reversibility of airway obstruction. 
The presence of a productive cough is an 
indication that the MD is of the 
bronchitic type. 
Elevated lung volumes indicate 
overinflation. 
Air trapping is indicated by the elevated 
difference between observed and predicted 
RV/TLC ratios. 
Improvement in airway resistance indicates 
some reversibility of airvay 
Airway obstruction’ls consistent virh the 
patient’s smoking history. 
The airway obstruction accounts for the 
patient’s dyspnea. 
Although bronchodilators were not 
useful fn this one case, prolonged use may 
prove to be beneftcial to the patient. 
The reduced diffusion capacfcy indicates 
atrvay obstruction of the mixed 
bronchitic and emphysematous types. 
Low diffusing capacity indicates loss of 
alveolar capillary surface. 
Obstructive Airvays Disease of mixed types 

150 cases not studied during the knowledge 
acquisition process were used for a test and 
validation of the ruIe set. PUFF inferred a 
diagnosis for each. PUFF-produced and expert- 
produced interpretations were coded for 
sracistical analysis to discover the degree of 
agreement. Over various types of disease states, 
and for two conditions of match between human and 
computer dfagnoses (“same degree of severity” and 
“vfthin one degree of severity”), agreement ranged 
between approximately 902 and IOOI. 

The PUFF story fs just beginning and 0111 be 
cold perhaps at the next IJCAI. The surprising 
punchline to my synopsis is that the current state 
of the PUFF system as described above was achieved 
in less than 50 hours of interaction with the 
expert and less than 10 -n-weeks of effort by the 
knowledge engineers. We have learned much in the 
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p.lac decade of the art of engineering knouledgc- 
based incelligcnt agenta! 

In the raataindct of this essay, I vould like 
to discuss the route that one research group, the 
Stanford Heuristic Programming Project, hns taken, 
illustrating progress vith case l tudiea, and 
discusming tbemea of the uork. 

2 ARTIFICIAL INTELLICXNCE b KNOULEDC& EXINEEIIINC~ 

The dichotomy that vsa used to classify rhe 
collected vwr= la the volume 
Computers and Thought still characterizes veil the 
motlvetlons end research efforts of the AI 
community. First, there are some vho work toward 
the construction of intelligent artifacts, or seek 
to uucover principles, methods. end techniques 
useful in such construction. Second, there are 
chose who view artificieI intelligence ea (to use 
Newell’s phrsaa) “theoretical psychology.” sacking 
explicit and valid informscion prOCSSSing models 
of human thought. 

For purposes of this essay. I wish to focus 
on the motivations of the first group, these days 
by far the larger of the two. I label these 
motivations “the lots: ligent agent vievpoint” end 
here is my understandlug of thet vlevpolot: 

“The potential wea of computers by 
people to accomplish rash can be ‘one- 
dlmenaion.alised’ into a apec trum 
representing the nature of instruction 
that must ba given the computer to do its 
job. Call it the URAL-TO-HOW spectrum. 
At one extreme of the spectrum. the user 
supplies his lntelllgmce to instruct the 
-china vith precision axacrly XOY to do 
hie Job, step-by-step. Progress in 
Computer Science ceo be seen ss atepa svsy 
from the extreme ‘HOW point on the 
spectrum: the familiar peooply of l aaembly 
languagea ( subroutine librarice, 
compilers, extensible languagea, etc. At 
the other extreme of the spectrum la the 
user vlth his real problem (WUT he wishes 
the computer. ee him instrument. to do for 
him). He aspires to colmmfcetc UllAT he 
veota dooe In a langusge that ia 
comfortable to him (parhepa English); vie 
cmicatfon modes that ere coovenleot 
for bin (lncludlng perheps. aperch or 
pieturen); with some gemerallty, some 
vagueness. imprecision. even error ;‘ 
without having to lay out lo det’ail all 
necessary subgoals for adequate 
performance - with reasonable ssaurence 
that he is addressing en InteIIlgent agent 
that La using knowledge of hia vorld to 
understand his intent. to fill 10 his 
vagueneaa, to sake spaciflc his 
abstractions, to correct his errors, LO 
discover appropriate suhgoela. and 

ultimately to translate WHAT ha really 
wants done into processing steps that 
define HOU it shall be done by .a real 
computer. The research activity aired at 
cresting computer programs that act iia 
“intelllgeot egentsv nesr the MlAT end of 
the UDAT-To-HOW spectrum COO be viewed ss 
the long-range goal of AI research.” 
(Felgenbaua, 1974) 

Our young acieoce 1s still more art than 
science. Art: “the principlea or methods governing 
soy craft or branch of learning.” Art: “skilled 
uorkmsnship, execution. or agency.” These the 
dictionary teaches us. Knuth tells us that the 
endesvor of computer programming is an arc. in 
Just these vays. The art of constructing 
lntelllgent agents is both pert of and an 
l xtenalon of the programming art. It la the art of 
building complex computer programs that represent 
and reason with knowledge of the world. Our art 
therefore lives in symbiosis with the other 
uorldly arts, whose practitioners -- axparts of 
their srt - hold the knowledge ve need to 
construct fntelllgent agents. In moat “crafts or 
branches of lesroing” what us cell “expertise” is 
the essence ot the art. And for the domains of 
knowledge that w touch with our art. it is the 
“rulea of expertise” or the rules of “good 
Judgment” of the expert practitioners of that 
domaio chat we seek to transfer to our programs. 

2.1 Lessons of the Past 

TWO insights from previous vork are 
pertinent to this essay. 

The first concerna the quest for generality 
and power of the inference engine used fn the 
perfornsnce of intelligent acte (what Nlnsky and 
Papert [see Goldstein and Paperr, 19771 have 
labeled “the paver strategy”). UC must hypothesize 
from our experience to date that the problem 
aolvviog paver exhibited In an lntelllgent agent’s 
perfomnce is primarily a consequence of the 
specialist’s koovledge employed by the agent. and 
only very secondarily related to the generality 
end power of the inference aethod employed. Our 
agents oust ba bowledge-rich, even if they are 
methods-poor. In 1970. reporting the firet msfor 
sunnary-of-results of the DWDBAL program (to be 
dlacuaaad lster). we addressed thia i.aa~e as 
folloua : 

“...general problereolvera are too 
weak to be used as the bash for buiIding 
high-perfornsnca systems. The behavior of 
the best general problem-solvers ve know, 
human problem-solvers, Is observed to be 
nak and shallow, except in the area* in 
which the human problan-solver is a 
specialist. And it la observed that the 
transfer of expertise becveen specialty 
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areas is slight. A  chess master 1s 
unlikely to be an expert algebraist or P” 
experr mass spectrum analyst, etc. In 
this view. the expert Is the specialist, 
with a specialist’s knowledge of his sees 
rnd specialfst’s 
heurist:c5.” (Feigenbauo. 

methods and 
Buchanan and 

Lederberg. 1971. p. 187) 

Subsequent evidence from our laboratory and 
aI others has only confirmed this bclfef. 

AI researchers have dramatically shffted 
their vfew on generality ahd power in the psar 
decade. la 1967, the canonical question about the 
PENDW program was: “It sounds like good 
chemistry. but what does it have to do with AI?” 
In 1977, Goldacain and Paperr write of a paradigm 
shtft in AI: 

“Today there has been a shift in 
paradigm. The fundamental problem of 
understanding Intelligence is OOC the 
identification of a fcv powerful 
techniques, but rather the question of bov 
to represent large amounts of knouledge in 
a fashion that permit5 their effective use 
and interaction.” (Goldstein and Papert, 
19771 

The second insight from past work concerns 
the nature of the knowledge that an expert brings 
to the performance of a task. Experience has 
shown us that this knowledge is largely heuristic 
kmnrledge. experiential. uncertain - mstly “good 
guesses” and “good practice,” in lieu of facts and 
rtg0r. Experience has also taught us that much of 
this knowledge fs private to the export. not 
because he is unvillLng CO share publicly how he 
performs. but because he is unable. He know more 
tbsn he is avare of knoving. Imy else is the 
Pha. or the Internship a gufld-like 
apprenticeship co a presumed “master of the 
craft?” What the masters really knov is not 
written in the textbooks of the masters.] But we 
have learned also that this private knowledge can 
be uncovered by the careful, painstaking analysis 
of a second p=rty v or sometimes by the expert 
himself, operating in the context of a large 
number of highly specific performance problems. 
Finally, we have learned that expertise is multi- 
faceted, that the expert brings to bear many and 
varied sources of knowledge in performance. The 
approach to capturing his expertise must proceed 
on many fronts 5imultaneousiy. 

2.2 The Knowledge Eoqineer 

The knowledge engineer is chat second party 
jurt discussed. [An historical note about the 
tern. In the mid-60s. John McCarthy, for reasons 
obvious from his work. had been descrfbing 
Artificial Intelligence as “Applied Epistemology.” 
‘&en I first described the DENDRAL program to 
Donald Hichle in 1968, he remarked that it was 
“epistemological engineering,” a clever but 
ponderous aad unpronounceable turn-of-phrase that 
I slmplffled into “knovledge engineering.“] She 
(in deference to my  favorite knowledge engineer) 
works intensively with an expert to acquire 
domain-specific knovlcdgc and organize It for use 
by a program. Simultaneously she is matching the 
tools of the AI workbench to the task at hand -- 
program organi2atlon8, methods of symbolic 
inference, techniques for the structuring of 
symbolic information, and the like. If the tooi 
fits, or nearly fits, she uses it. If not, 
necessity mothers AI invention, and a oew tool 
gets created. She builds the early versions of the 
intelligent agent, guided always by her intent 
chat the program eventually achieve expert Leveis 
of performance in the task. She refines or 
reconceptualiaes the system 5s the tncreasing 
amount of acquired ,\novledge eau5es the AI tool to 
“break” or slow down intolerably. She 0180 raffnes 
the human interface to the intelligent agent with 
several aims: co make the system appear 
“comfortable” to the human user in his linguistfc 
transactions vith it; to make the system's 
inference processes understandable to the user; 
and to make the assistance controllable by the 
user vhen, in the context of a real problem, he 
has an insight that previously was not elicited 
and therefore not incorporated. 

In the next section, I vish to explore (in 
summary form) some case studies of the knovledge 
engineer’5 art. 

3 CASES FROH THE KNOWLEDGE ENGINEER’S WORKSHOP 

I will draw material for this section from 
the work of my group at Stanford. Much exciting 
work la knovledge engineering is gofng on 
elsewhere. Since my  intent is not to survey 
literature but to illustrate themes, at the risk 
of appearing parochial I have used as ca5e studies 
the wrk I knov bert. 

w collaborators (Professors Lederllerg and 
Buchanan) and I began a series of projects, 
initially the development of the DENDRAL program, 
in 1965. We had dual motives: first, TV study 
scientific problem solving and discovery, 
particularly the processes scientists do use or 
should use in fnferring hypotheses and theories 
from empirical evidence; and second, to conduct 
this study in such a way that our experimental 
programs would one day be of use to working, 
scientists. providing Lntelligent assistance on 
feportant and difficult problems. By 1970. we and 
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our co-workers had gafned enough experience that 
we felt comfortable in laying out a program of 
research encompassing work on theory formation. 
knowledge ucllFratton. knowledge acqutoltion, 
explanation, and knowledge engineering techniques. 
Although there were some surprises along the way 
(lfke the All program). the general lines of the 
research sre proceeding as l nvfsioned. 

THEMES 

As a road map to these case studies, it is 
useful to keep in mind certain major themes: 

Cenerstion-and-test: Omnipresent tn our 
exneriments is the “classical” neneration-and- 
test framework that has been the hallmark of AI 
programs for tvo decades. This is not a 
consequence of s doctrinatre attitude on our part 
about heuristic search, but rather of the 
usefulness and sufficiency of the concept. 

Sftuation -> Action Rules: Ue have chosen to 
represent the kno-•,ledge of experts in this form. 
Making no doctrinaire claims for the universal 
applicability of this representation, we 
nonetheless point to the demonstrated utility of 
the rule-based representation. From this 
representation flov rather directly msny of the 
characteristics of our programs: for example. 
ease of modification of the knowledge, case of 
explanation. The essence of our approach is that 
a rule must capture s “chunk” of domain knowledge 
char is meaningful, in and of itself, to the 
domain specialist. Tbucr our rules bear only a 
historical relationship to the production rules 
used by Newell and Simon (1972) vhich we view as 
“machine-language programming” of a 
recognize -> act machine. 

The Domain-Specific Knowledge: It plays s critical 
role in organizing and constraining sesrch. The 
theme is that in the knowledge is the power. The 
interesting action srises from the knowledge 
base, not the inference engine. We use knowledge 
in rule form (discussed above), in the form of 
inferentially-rich models based on theory, and in 
the form of tableaus of symbolic data and 
relationships (i.e. f rawlike structures). 
System processes are made to confons to nstural 
and convenient representations of the domain- 
specific knowledge. 

Flexibility to aodifv the knovledKe base: If the 
so-es1 led “grain sire” of the knowledge 
representation is chosen properly (i.e. small 
enough to be comprehensible but large enough to 
be mesningful to the domain epecislist), then the 
rule-based approach allows great flexibility for 
adding. removing. or changing knowledge in the 
system. 

Line-of-reasoning: A csncrsl organizing principle 
in the design of knovledge-based intelligent 
agents is the naintenance of a line-of-reasoning 
that is comprehensible to the domain specialist. 

This principle is, of course, not a logical 
necessity, but seems to us to be an engineering 
principle of major importance. 

Multinle Sources of Knowledge: The forwcion and 
maincensnce (support) of the line-of-reasoning 
usually require the integration of many disparate 
sources of knowledge. The representational and 
inferential problems in achieving s smooth and 
effective integration are formidable engineering 
problems. 

Explanation: The ability to explain the line-of- 
reasoning in a language convenient to the user is 
necessary for application sad for system 
development (e.g. for debugging and for extending 
the knowledge base). Once again, this is an 
engineering principle, but very important. Uhat 
constftutcs “an explanation” is not a simple 
concept, and considerable thought needs to be 
given, in each case, to the structuring of 
explanations. 

CASE STUDIES 

In this section I vi11 cry to illustrate 
these themes with various csse studies. 

3.1 DENDRAL: Infertine Chemical Structures 

3.1.1 Historical Note 

&gun in 1965. this collaborative project 
with the Stanford Hass Spectrometry Laboratory has 
become one of the longest-lived continuous efforts 
in the history of AI (a fact that la no spa11 way 
has contributed to irs success). The basic 
framwrk of generation-and-test and rule-based 
representation has proved rugged and extendable. 
For us the DENDRAL system has been a fountain of 
ideas. many of which have found their way, highly 
metamorphosed, into our other projects. For 
exsmple. our long-standing commitment to rule- 
based represenrstioas srose 0°C of our 
(successful) attempt to head off the imminent 
ossification of DHNDRAL caused by the rapid 
accumulation of new knowledge in the system around 
1967. 

3.1.2 Task 

To enumerate plausible structures (atom-bond 
graphs) for organic molecules, given two kinds of 
information: analytic instrument data from a mass 
spectrometer and a nuclear magnetic resonance 
spectrometer; and user-supplied constraints on the 
answers, derived from any other source of 
knowledge (instrumental or contextual) available 
to the user. 
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3.1.3 ReprCSCntaLions 

Chemical structures are represented as nodr 
link graphs of atoms (nodes) and bonds (links). 
Constraints on search are represented as subgraphs 
(acomic configurations) to be denied or preferred. 
The empirical theory of mass spectronecry is 
represented by a set of rules of the general form: 

Sttwtfoa: Parricular atomic 
configuration 
(subgraph) 

( Probability, P, 

I 
of occurring 

V 

Action: Fragmentation of the 
particular configuration 
(breaking links) 

Rules of this forn are natural and expressive to 
mess speccrometrists. 

3.1.6 Sketch of Hethod 

DENDRAL’s inference procedure 1s a heuristic 
search that takes place in three 5cages. without 
feedback: plan-generate-test. 

"CenVate" (a program called CONCEN) is a 
generation process for plausible structures. ICS 
foundation is a combinatorial algortthm (vith 
aathemaeically proven properties of complecene55 
and non-redundant generation) that can produce all 
the topological ly legal candidace 5trUCturss. 
Constraints supplied by the user or by the “Plan” 
process prune and seer the geaeracion to produce 
the plausible set (i.e. chose satfafyiag the 
constraints) and not the enormous legal set. 

“Test” ref fnes the l valuation of 
plausibility. discardfng less worthy candidates 
and rank-ordering the remainder for examination by 
the user. “Test” first produces a “predicted” set 
of instrument data for each plausible candldete. 
ustng the rules described. It then evaluates the 
wrrh of each candidate by comparing its predicted 
data vtth the actual input data. The evaluation 
is based on heuristic criterfa of goodness-of-fit. 
Thus, “test” selects the “best” explanation5 of 
the data. 

“Plan” produces direct (i.e. not chained) 
tnf l rence about like Ly subrcructure In the 
molecule from patterns in the data chat are 
indicative of the presence of the substructure. 
(Patterns in ehe data trigger the left-hand-sides 

of substructure rules). Though composed of many 
atoms whose interconnections are given. the 
substructure can be manipulated as atom-like by 
“generate.” Aggregating many units entering tnto a 
combinatorial process into fewer htgher-level 
units reduces the size of the combinarorial search 
space. “Plan” sets up the search space so aa to be 
relevent co the input data. “Generate is the 
inferencs cacticlan; ‘Plan” is the inference 
strategist. There is a separate “Plan” package 
for each type of instrument daca, but each package 
passes substructures (subgraphs) to “Generate ” . 
Thus, there is 5 uniform interface between “Plan” 
and “Gearrace.” User-supplied constraints enter 
this fnterface. directly or from user-assist 
packages. tn the form of substructures. 

3.1.5 Sources of Knovledse 

The various sources of knowledge used by the 
DENDRAL system are: 

Valences (legal connections of atoms); 
stable and uastable configurations of atoms; rules 
for m5ss speccrometry fragmencacions; rules for 
NMR shifts; expert's rules for planning and 
evaluation: user-8uppL ied constraints 
(contextual). ‘* 

3. X.6 Results 

DgNDRAL’s structure elucidation abilftles 
are. paradoxically. both very general and very 
narrow. Ia general, DENDRAL handles ail molecules, 
cyclic and tree-like. In pure 3tructure 
elucidation under constraints (without instrument 
data).CONCgN is unrivaled by human performance. In 
structure elucidation with inacrumenc data, 
DLNDRAL’s performance rivals expert human 
performance only for a smail number of molecular 
families for which the program has been given 
5pecialisc’s knowledge. namely the families of 
interest to our chsmfsc collaborators. I will 
spare this computer science audience the list of 
name5 of these families. Uithia these areas of 
knovlsdge-intensive specialization, DENDRAL -s 
perfomnce is usually not only much faster but 
also more accurate than expert human performance. 

The statement just made summarlses thousands 
of runs of DENDRAL on problems of interest to our 
experta, their colleagues, and their studencs. The 
results obtained. along with the knowledge chat 
had to be given to DERDRAL to obtain them, are 
published in major journals of chemistry. To date, 
25 papers have been published there, under a 
aerie title “Applications of Artificial 
Intelligence for Chemical Inference: <spaTif ic 
subject>” (see references). 

The DKNDRAL system fs in everyday use by 
Stanford chemists, their collaborators at ocher 
universities and collaborating or otherwise 
interested chemists in fndustry. Users outside 
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I;t:rnford BCL’PS.s the syacrn ““CT rommerr i 3 1 
compuc*r/commcinicacions network. Thr prob I c-es 
chry are solving are often dlff lcul t and novrl . 
The Pri tfsh povcr”m m c  is currently supporting 
work at Edinburgh aimed at transferring DENDRAL to 
induscrlal user cnmmuntttes in the UK. 

3. I. 7 Discussion 

Representaclon and extensibility. The 
wpresentatlon chosen For the molecules, 
ronscraincs, and rules of instrument data 
interpretation Is sufficiently claw CO that used 
hY chemists In thinking about scructurc 
elucidation that the knowledge base has been 
extended smoothly and easily. mostly by chemists 
themselves in recent years. Only one major 
reprogramming effort took place In the last 9 
years -- when a new generator was created to deal 
vlth cyclic ~cr~~c~re~. 

Representation and the Integration of 
multiple sources of knowledge. The generally 
difficult problem of fnteRratinR various sources 
of knowledge has been made easy in DENDRAL by 
careful engineerinK of the representations of 
objects, constraints, and rules. We insisted on a 
C”lll?O” language of compatlblIity of the 
representations vfth each other and with the 
1”ference processes: the language of molecular 
structure expressed as graphs. This leads to a 
stralqhtforward procedure for addlng a new source 
of knowledge, say. for example, the know1 edge 
associated with a new type of instrument data. The 
procedure is this: write rulea that describe the 
effect of the physical processes of the Instrument 
0” no1 ecu1 es using the situation -> action form 
with molecular graphs on both sides: any special 
Inference process ustng these rules must pass its 
results to the generator only(!) in the common 
graph language. 

It is today vldely believed in AI that the 
use of many diverse sources of knowledge In 
problem solving and data interpretation has a 
strong effect on quality of performance. HOW 
stronq Is. of course, domain-dependent. but the 
impact of bringlnq just one additional source of 
knowledge to bear on a problem can be startling. 
In one difficult (but not unusually difficult) 
mass spectrum analysis problem*, the program using 
its mass spectrometry knovledge alone would have 
generated an impossibly large set of plausible 
candidates (over I.25 million! 1. Our engineering 
response to this was to add another source of data 
and knowledge, proton NHMR. The addition on a 
simple interpretive theory of this !DfR data, from 
which the proDram could infer a few additional 
ronstraints. reduced the set of olauslble 
candidates to one, the riRht structure! This was 
not an isolated result but shoved up dozens of 
t imes In subsequent analyses. 

------------------ 
l the analysis of an acyclic amine vith formula 
C2OKLW. 

DENDRAL and data. DEKDRAL’s robust mode1 s 
(topologlca1. chemical. instrumental) permit a 
strategy of finding solutions by generating 
hypothetical “correct answers” and choosing among 
these with critical tests. ThlS strategy 1s 
opposite to that of piecing together the 
Implications of each data point to form a 
hypothesis. UC call DENDRAL’s strstegy largely 
model-driven, and the other data-drive”. The 
consequence of having enough knowledge to do 
model-driven analysis is a large reduction in the 
amount of data that must be examined since data fs 
being used mostly for verification of possible 
answers. In a typical DENDRAL mass spectrum 
analysis, usually no more than about 25 data 
points out of a cyptcal total of 250 points are 
processed. This important point about data 
reduction and focus-of-attention has been 
discussed before by Gregory (1968) and by the 
vision and speech research Rroups, but Is not 
widely understood. 

Conclusion. DERDRAL was an early herald of 
AI’s shift to the knovledge-based paradigm. It 
demonstrated the point of the primacy of domaln- 
specific knowledge in achieving expert lavels of 
performance. Its developmew t brought to the 
surface important problems of knowlcdee 
representatiofl. acquisition. and USC. It shoved 
that, by and large, the AI tools of the first 
decade were sufficient to cope wfth the demands of 
a complex scientific problem-solving task,Or were 
readily extended to handle unforsecn difflcultles. 
It demonstrated that AI’s conceptual and 
programming tools were capable of producing 
programs of applications interest, albeit in 
narrow special ties. Such a demonstration of 
competence and sufficiency was Important for the 
credibility of the AI field at a critical juncture 
in its history. 

3.2 HETA-DENDRAL: inferring rules of mass 
snectrometry 

3.2. I Historical note 

The META-DERDRAL program is a case study tn 
automatic acquisition of domain knowledge. It 
arose out of our DENDRAL vork for two reasons: 
first, a decision that vlth DENDRAL we had a 
sufficiently firm foundatlon on which to pursue 
our lonR-standing interest in processes of 
scientific theory formation; second, by a 
recbgnltion that the acquisition of domain 
knovledRc was the bottleneck problem In the 
building of applications-orirnted Intelligent 
agents. 

X2.2 Task 

M S ’TA-DEDDRAL’s job is LO infer rule? of 
fragmentation of molecules in a mass spectrometer 
for possible later use by the DE?IT)RAI. performance 
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proqram. The inference is co be made from acrusl 
spoccra recorded from know molecular structures. 
The oucpuc of the SYSLWI is the set of 
frn~mcntation rules discovered, summary of the 
evidence tuppartlnR each rule, and a summery of 
contra-indicating widener. User-supplied 
constraints cm also be input to force the form of 
rules along desired lines. 

3.2.3 Represencactons 

The rules arc, of course, of the same form 
as used by DENDRAL char was described earlier. 

3.2.4 Sketch of Vethod 

URA-DEBDRAL. like DEh3RAL. uses the 
rcnrration-and-test framework. The process is 
orA.xnited fn chrre staRes: Reinterpret the data 
an-’ summari*e evidence (lrrSuM) ; generace 
plausible candidates for rules WJLECEN); test and 
refine the set of plausible rules (RUtMOD). 

INTSLM: gives wery data point in wery 
spectrum an interpretation as a possible (highly 
specfficl fraReentacion. It then sumaarizcs 
stntiscically the “ueiRht of evidence” for 
fragmentations and for atomic configurationa that 
cause these fragmentations. fhue. the job of 
INTSLD4 is to translate data to DENDRAL subgraphs 
and bond-breaks, and co summarize the evidence 
JccordlnRly. 

RULECEN: conducts a heuristic search of the 
space of all rules chat are legal under the 
DENDBAL rule syntax and the user-supplied 
constraints. Xc searches for plausible rules, i.e. 
those for which posirlve evidence exists. A search 
path is pruned when there is no evidence for rules 
of the class just qeneraccd. The search tree 
begins vi th the (single1 most general rule 
(loosely put, “anything” fragment9 from 
“anything”) and proceeds level-by-level toward 
more detailed specifications of the “anything.” 
The heuristic stopping criterion measures whether 
a rule being generated has become too specific. in 
particular vhccher tt is applicable to too few 
molecules of the input set. Slmi1arly there is a 
criterion for decidinR vhecher an emerRing rule is 
too Rsncral. Thus. the output of RULECEN Is a set 
of candidate rules for which there is positive 
evidence. 

RULE%OD: tests the candidate rule set using 
more complex criteria. includlnR the presence of 
neRatfve evidence. It removes redundancies in the 
candidat* rule set ; merges rules that are 
supported by the same evidence: tries further 
special izacton of candidates to remove negative 
iCVl4CnCe; and tries further Reneralizstion chat 
preserves posirivc evidence. 

3.2.5 Results 

HFTA-DENDRAL produces rule sets chat rival 
in quality those produced by our collaborating 
experts. In some rests, HETA-DENDRAL recreated 
rule sets that ve had previously acquired from our 
experts during the DENDRAL project. In d more 
stringent test involving members of a family of 
complex r ingcd molecules for vhich the mass 
specrral theory had not been completely worked out 
by chemists, META-DENDRAL discovered rule sets for 
each subfamlly. The rules were judged by experts 
to be excellent and a papcr describing them vaa 
recenciy published in a maj or chemical journal 
(Buchanan. Smith, et al. 1976). 

In a test of the generality of the approach, 
s version of the META-DENDRAL program 1s currently 
being applied to the discovery of rules for the 
analysis of nuclear mognecic resonance data, 

3.3 WCIN and TEIRESIAS: Medical Diagnosis 

3.3.1 Htstorfcal not; 

HYCIN orlglnated in the Ph.D. thesis of E. 
Shortliffe (now Shortlfffc. M.D. as well). Ln 
collaboration vith the Infectious Disease group at 
the Stanford Medfcal School (Shorcliffe, 1976). 
TEIRESIAS, the Ph.D. thesis vork of R. Davis., 
arose from issues and problems indicated by the 
MYCIN project but generalized by Davis beyond chr 
bounds of 
1976). 

medicaln~~~~n~:::ee~pl~~ea:f~ns W:vls, 
Ocher In 

progress. 

3.3.2 raJks 

The WCIN performance cask is diagnosis of 
blood infections and meningitis tnfectlons and the 
recommendation of drug treatment. !iYCIN conducts 
a coneultacion (in English) with a physic ian-user 
about a patient case, constructing lines-of- 
reasoning leading to the diagnosis and treatment 
plan. 

The TEIRESIAS knovledge acquisition task can 
be described as follow: 

In rhe context of a particular consultation. 
confront the expcrc vith a diagnosis vith which he 
does not agree. Lead him systematicaLly back 
through the line-of-reasoning that produced the 
diagnosis CO tho point ac vhich he indicates the 
analysis wane awry. Incerncc with the expert co 
modify offending rules or to acquire new ruies. 
Rerun the consul tat ion to test the soIution and 
gain the expert’s concurrence. 

195 
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3.3.3 

IF 

Rcpresentattons: 

NYCIN’s rules are of the form: 

<coajuoctlve clauses> THEN <implication> 

Here is an example of a HYCIN rule for blood 
fnfections. 

RULE 85 

IF: 
1) The rice of the culture is blood. and 
2) The gram acain of the organism is 

gramncg , and 
3) The morphology of the organism ia 

rod, and 
4) The patient is a compromised host 

THEN: 
There is suggestive evidence (-6) that 
the identity of the organism is 
pseudomonas-aeruginose 

THIRESIAS allow the representation of 
HYCIN-like rules governing the use of ocher 
ru1es.i.e. rule-baaed strategies. Aa example 
follows. 

3.3.5 Language of Intetac tion 

The language used looks like it raight be 
English but is actually the dialect “DocLor-ese” 
ured by members of the tribe of healing arts 
practitioners. Reasonably simple I anguage 
processing methods suffice. When ambiguities of 
interpretation are encountered, they are Ted back 
to the user for decisions about meaning. 

3.3.4 Sketch of method 

MYCIN employs a generation-and-test 
procedure of a familiar sort. Tbe generation of 
steps in the line-of-reasoning is accomplished by 
backward chaining of the rules. An IF-side clause 
is either immediately true or false (as determined 
by patient or test data entered by the physician 
in the consultation); or is to be decided by 
subgoaling. Thu.. “test” ia interleaved with 
“generation” and serves to prune out incorrect 
lines-of-reasoning. 

Each rule supplied by an expert has 
l ssocieted with it a “degree of certainty” 
representing the expert’s confidence in the 
validity of the rule (a number from I to LO). 
HYCIB usea a particular ad-hoc but simple model of 
inexact reasoning to cumulate the degrees of 
certainty of the rules used In an tnference chain 
(Shortliffe and Buchanan, 1975). 

It follows that there may be a number of 
“aomevhat true” lines-of-reasoning -- some 
indicating one diagnosis, some indicating another. 
All (above a threshold) are used by the system as 
sources of knovledge indicating plausible lines- 
of -reasoning. 

TEIRESIAS’ rule acquisition process is based 
on a record of tWCIN’s search. Rule acquisition is 
guided by a set of rule models that dictate the 
form and indicate the likely content of new rules. 
Rule models are not given in advance, but are 
inferred from the knowledge base of existing 
rules. 

IF: 
1) the patient is a compromised host, and 
2) there are ruler vbich mentioa in their 

premise pseudomonas 
3) there are rules vhich mention in their 

preoiee klebsiellra 

THEN: 
There is suggestive evidence (.4) that the 
former should be done before the latter. 

3.3.6 Example diagnosis and treatment plan 

The folloving is an example of a diagnosis 
reported by RYCIN to one of its users foll,ovlng a 
consultation. An example consultation vi11 not be 
ahovm. but one can be found in Shortliffe’s book 
(Shortllffe, 1976). 

--------- m -s- 
Fly therapy recommendations vi11 be designed 
to treat for organisms that are either very 
likely or, although less likely, would have 
a significant effect on therapy selection 
if they were present. It is important to 
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cover for chr followtnR probable 
infection(s) and associated organism(s): 

INFECTION-l is CYSTITIS 
<Item I> PSEUDOIYONAS-CEPACIA [ORCANISl#-51 
<Item 2, CIIROBACTER-OIVRRSUS [ORGANISMS] 
<Item 3s E.COLI [ORCANISt!-31 

MFETXON-2 la UPPER-RESPIRATORY-INFZTION 
<Item 4> LISTERIA [ORGANISM-21 

INFECTION-3 is RACTgRDfIA 
<Item 5> WTEROCCCCUS [ORGANI%!- 1 

[REC-II tly preferred therapy recommendation 
is as folloue: 

In order to cover for Items ~1 2 3 4 5X 
Give the following in combination: 
I ) KANAMYCIN 
Dose: 7.50 mg (7.5 =&kg) q12h IF! (or IV) 

for 28 days 
Comments: Modify dose in renal failure 
2) PENICILLIN 
Dose: 2,500.OOO units (25000 unitm/kg) 

q4h IV for 28 days 

--e-------w-- 

3.3.7 Results 

MYCIN ts currently bcfng prepared for 
clinical evaluation. In a prellmtnary evaluation. 
done outside of the clfaical setting, l panel of 
expert judges uas asked to rate MYCIN’s 
perfomance along a number of dimensions (e.g. 
infecting organism ldentif ication, organism 
siRniflcance1. In 90X of the casem submitted CO 
the judges, a majority of the judgca raid thet the 
program’s decisions uere the-some-as or as-good-as 
the decisiona they would have made. 

3.3.8 Exulaaacfon 

MYCIN can expose its line of reasoning by 
offering explanattons of various kinda. ‘Why” and 
“How” questions can be asked by the user during 
the consultation. “my” is the user’s usy of 
inquiring. ‘Why do you vaac to know that?” “Row” 
is his uay of asking, “Hou did you conclude 
that...?" In a post-consultation, he can similarly 
inquire about how the diagnostic conclusiona uere 
reached, and inquire about the reasons why certain 
ocher conclusions verc ruled out. Examples of the 
XYCIN-TEKRESIAS explanation capabilities follow: 

I lYCXN: Is the patient’s fllness with 
ORGANISM-I a hospital-acquired infection? 
USER: UKY 
TEIRFSIAS: (i.e. WRY is it imporcrnt to 
determine whether or not the infection with 
ORGANISM-l uas acquired while the patient 
uaa hospitalized?) 

Il.01 This ~111 aid in determining the 
category of ORGANISM-I. 

It has already been l acablished that 

Il.11 the gram stain of ORGANISM-1 is 
gtameg. and 
Il.21 the morphology of ORCANISR-1 is rod. 
cud 
[I.31 the aerobicity of ORCANISH-I is 
facultatlve 

Therefore. if 

11.41 the infection with ORGANISM-I was not 
acquired while the patient was hospitalized 

then 

there is strongly suggestive evidence (.8: 
that the category of ORGANISM-1 is 
enterobscterirceae 

Also: there is weakly suggestive evidence 
(. 1) that the identity of 
ORGANISU-1 is pseudomonas-acruginosa 
[RULE 371 

USERR: KOU 1.3 

TEIRESIAS: [i.e. HOU vas it established 
that the aeroblcfty of ORCXNISH-I ts 
facultative?I 

The following uere wed: 

f3.11 RULE 27 indicated there is strongly 
suggestive evidence (.8) that rhe 
aerobicity of ORGANISR-1 1s facultativc 

13.2) RULE 27 indicated there is weakly 
suggestive evidence (-2) that the 
rerobicity of ORCANISX-I is anaerobic 

Since this gave a cumularive CF of c.8) for 
facuitaclve, and c.2) for anaerobic, i.t has 
been established that the aerobicity of 
ORGARISH- is faculcative. 
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USER: WHY DIDN’T YOU CONSIDER 
STREPTOCOCCUS AS A  WSSIBILITY FOR 
ORGANISM-1 7 

TEIRESIAS: The following rule could have 
been used CO detetmiue that the fdentlfy of 
ORCANISM-1 was strepcococcw: RULE 33 

But claue 2 (“the morphology of the 
organlao IS coccus”) W A S  already know 
co be false for ORCANISP!-I, so the rule ves 
never tried. 

3.3.9 Discussion 

A fev short comments aimed nt knowledge 
engineering are in order. 

English is the language moat natural snd 
comfortable for out experts and users. and van 
therefore the language chosen for interactive 
consultation, explan8tion. and external 
representation of the rules (the internal format 
is INTERLISP). This situation is not peculiar to 
doctors; in most mew of applfcat1on of 
intelligent agents I believe that Eaglieh (i.e. 
natural langusge) vi11 be the language of choice. 
Programming an English language proceesor aad 
front-end to such SyBtcw is not . sc4ry 
enterprise because: 

a) the domain is specialized. so that 
possible interpretations are constralned. 

b) specialist-talk is replete with stsndard 
jargon and stereotyped veye of expressing 
knowledge and queries - just right for text 
templates, simple gr-rs and other simple 
processing schemes. 

cl the ambiguity of interpretation resulting 
from simpple schemes caz~ be dealt with easily by 
feeding back Cntcrpretatlous for confirmation. If 
this is done tith s pleasant “I dido’t quite 
understand you...” tone. it is not irritating to 
the user. 

English msy be exactly the wrong language 
for representation and interrctioo in 80-e 
dorrfns. It would be svkvard. to sey the lust. to 
represent DE24DUAL’s chemical atructuren and 
knovledfle of M A W  apectronetry in English, or to 
interact about these vlth a user. 

Staple crplsnation schenee hsve been .s part 
of the AI scene for a number of years and 4r’c not 
hard to implement. Rcaily good models of what 
l xplanstion is as a traauction between user and 
agent, vf th programs to implement these models, 
vi11 be the subject (I predict) of much future 
research in AI. 

Without the l xpLanaCion capability, I 
asert, user acceptance of WIN would have been 
nil. and there would have been a greatly 
diminished effectiveness and contribution of our 
experts. 

HYCIN wss the first of our progrsos that 
forced ua to deal with uhst ve bad always 
understood: thst experts’ knovledge is uucertafn 
and that our Inference engines had to be msde to 
reason titb this uncertainty. It is leas importaot 
that the inexact reasoning scheme be formal, 
rigorous, md uniform thro it is for the scheme to 
be natural to and eaolly underataudable by the 
experts and users. 

All of cheat points can be summarized by 
saying that HYCIN snd its TEIRESIAS sdjuact are 
exper1mmts in the design of a see-through system, 
whose represeatatioas and processes are almost 
transparently clear to the domain specialist. 
“Almost” here is equivalent to “with a few minutes 
of introductory description.” The various pieces 
of MTCIN - the b&ward chaining, the English 
traiasac tious , the explanations. etc. - are each 
simple fn concept and realization. But there are 
great virtues to simplicity in syetcr design; and 
vieved as s total intelligent Agent system. 
HYCIN/TZIRESIAS’is one of the best engineered. 

3.4 SU/X: signal understanding 

3.4.1 Historical note 

su/x ia a system design that vas tested in 
00 application vhose details arc classified. 
&cause ot thin. the easuiug discussion vi11 
appear considerably less concrete and tangible 
thro the preceding CS.C studies. This system 
design vss done by H.P. Nii and PC, and vss 
strongly influenced by the QLU Hesrmy II system 
design. 

3.4.2 Task 

SU/X'U task la the formation and continual 
updatf ng , over long periods of time, of hypotheses 
shout the identity, location, and velocity of 
objects in s physical apace. The output desired is 
a display of the “curreoc best hypotheses” with 
full explanation of the support for each. There 
are two types of input data: tha primary signal 
(to be understood); and suxiliary symbolic data 
(to supply context for the understanding). The 
primary signals are spectra, represented as 
descriptions of the spec:ral lines. The various 
spectra cover the physics1 space vith some spatial 
overlap. 
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3.4.3 Represencactons 

The rules give” by the expert about objects. 
their behavior. and the interpretation Of SfgM1 
data from them are all rcpreaented in the 
situation -> action form. The "slt"atiom3" 
constitute 1,WOktng conditions and the "actiona" 
are processes that modify the current hypotheses, 
P-t unresolved issue5, recompute evaluations. 
etc. The expert’s knowledge of how to do analyafs 
in the task is also represented in rule form. 
There strategy rules replace the normal exccutfve 
program. 

The situation-hypochaeis fa repreaaoted a8 a 
node-link graph. tree-like in chat it has distinct 
“levels,” each representing a degree of 
abstraction (Or Za88reg~CiOll) that is natural to 
the expert in his understanding of the domaio. A  
node represents an hypothesis; a link to that node 
represents support for that hypothesis (as in 
HEARSAY 11. “support from above” or “support f roa 
below”). “tower” levels art concerned with the 
specif its of the signal data. “Higher” levels 
represent symbolic abstractions. 

3.4-h Sketch of method 

The altuation-hypothesis 15 formed 
incrementally. As the situation unfolds over time, 
the triggering of rules modifiet or discards 
existing hypotheses, adds new ones, or changes 
support values. The situation-hypothesis is a 
common wrkspace (“blackboard.” in HEARSAY jargon) 
for all the rules. 

In general, the incremental steps toward a 
more complece and refined l ituacioa-hypothceis can 
be viewed as a sequence of local generate-and-test 
activities. Some of the rules are plausible move 
generators. geoeracing either nodes or links. 
Other rules are evaluators. testing and modifying 
node descriptiona. 

In typical operation. aev data is submit ted 
for processing (say. N tint-units of neu data). 
Thfs inftiaces a flurry of rule-triggerlogs and 
consequently rule-actions (called “events”). Some 
tvencs are direct consequences of the data; other 
avents arise io a cascade-like fashion from the 
triggering of rules. huxflisry symbolic data also 
cause events, usually affecting the higher levels 
of the hypothesis. As a consequence, aupport- 
fro-above for the lower level ptoceaaes is made 
available; aad expecrrtioar of possible lower 
level events can be formed. Rventually all the 
relevant rules have their say aod the system 
becomes quiescent, thereby triggering the input of 
new data to cc-energize the inference activity. 

The ayatem uses the almplifying strategy of 
Mincainfag only oae ‘*best” situation-hypothesis 
PC any moment, modifying it incrementally as 
required by the changing data. Thls approach is 
made feasible by several characteristics of the 

dcmain. First, there is the strong conclnuity 
over t ime of objects and their behaviors 

,(specifically, they do not change radically over 
time. or behave radically differently over short 
periods). Second, a single problem (identity, 
location and velocity of a ptrtlcular aat of 
obj ecca) persists over numerous data gathering 
periods. (Coapere this to speech understanding in 
which each sentence is spoken just once, and each 
presents a neu and different problem.) Finally. 
the syscen’s hypothesis is typically “IIlEJosc 
right.” in part becsuse it gets numerous 
opportunities to refine chc solution (i.e. the 
numerous data gathering periods), and la part 
because the availability of many knouledga sources 
tends to over-derernine the solution. As a result 
of all of thatt, rhc current best hypothesis 
changes only slwly vith time, and hence keeping 
only the current best is a feasible approach. 

Of latereat are the time-based events. These 
rule-like expressions, created by certain rules, 
trigger upon the paasaqs of specified amounts of 
time. may implement various “wait-and-see” 
strategies of anelysis that are uaaful in the 
domaia. 

3.4.5 Results 

In the teat application. using signal data 
generated by a simulation program because real 
data uas not available, the program achieved 
expert level6 of performance over a *pan of test 
problems. Some problems wre difficult because 
there vao very little primary signal to auppor t 
inference. Others were difficult because too much 
signal induced a plethora of alternatives with 
much ambiguity. 

A difitd SU/X design is currently being 
used as the basis for an application to the 
interprctatlon of x-ray crystallographic data, the 
CRYSALIS program mentioned later. 

3.4.6 Discussloo 

The role of the auxtliary symbolic sources 
of data is of critical importance. They supply a 
symbolic model of the erlstlng situation that Is 
used to generate txpactationt of events to be 
observed in the data stream. This allovs flow of 
inferences from higher levels of abstraction to 
lover. Such a process, 50 familiar to AL 
researchera. apparently is al?ESt unrecognized 
0-s 5igTlal processing engineers. In the 
application task, the expectation-driven analysis 
is essential in controlling the combinatorial 
procesaiog explosion at the lover levels,exactly 
the explosion chat forces the traditional afgM1 
processing angineers to aeek out the largest 
possible number-cruncher for their vork. 

The de8lgU of appropriate explanations for 
the user takes an interesting twist in SU/X. The 
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situation-hypothcals unfolds piecemeal over time,, 
but rhe ” appropriate” explanation for the user is 
one chat focueea on individual objects over time. 
Thus the appropriate l xpIenatinn muet be 
synthesized from a history ol all the events that 
led up to the current hypothesis. Contrast this 
virh the HYCIN-TEIRESIAS reporting of rule 
invocatioee in the eonetructioa of a reeeoning 
chain. 

Since its knowledge beee and its auxiliary 
eymbolic data give it l model-of-the-eituetion 
that StrO&y coastreins interpretation of the 
primary data Stream. swx Is relarivelp 
unperturbad by l rrorful or missing date. These 
data conditions merely cause fluctuations in the 
credibility of individuel hypotheses and/or the 
creation of the ‘*“aIt-end-see” events. SU/X can be 
(but has not yet been) ueed to control l enaore. 
Since its rulce specify what types end vel”ee of 
evidence ere nece8eary to establish support, nnd 
since it Is constantly processing a complete 
hypothesis structure. It can request “critical 
readings” from the sensors. In general, this 
a1 lows an efficient use of Umited sensor 
bandwidth and data acquieirion processing 
capability. 

3.5 OTHER CASE STUDIES 

Space does not ellov more than just e brief 
sketch of other interesting projects that have 
been completed or are in progress. 

3.5.1 A?+: mathematical discovery 

A M  is l knowledge-based system thet 
conjectures interesting concepts in elemantary 
mathematics. It is a diecoverer of interesting 
theorem8 to prove, not a theorem proving program. 
It was conceivad and executed by D. Lenat for his 
Ph.D. thesis, and Is reported by him in these 
proceedings (“An Overview of An”). 

API’s knWltdgt 18 beeicelly of CM types: 
rules thet S"g8t‘t possibly interesting new 
concepts from previously coojectured concepts; and 
rulae that evaluetc the mathematical 
“lntereetingne*e” of a conjecture. These rules 
attempt to capture the expertire of the 
profeeeionel mathemeticlan at the teak of 
mathematical diecovery. Though LeneC ie not a 
profeeeionel mathematieien. he vae able 
successfully to eerve as his owe expert in the 
building of this program. 

A?4 conducts a heuristic aearch through the 
space of concepte treatable from its rules. Its 
basic frnmewrk is generetion-end-test. The 
generation is plausible uove gtwrecion, se 
indicated by the rules for formation of new 
concepts. The test I‘ the evaluation of 
“incereatingness.” Of particular note is the 
method of test-by-example that lends the flavor of 

scientific hypothesis testing to the caterprlee of 
mathematical discovery. 

Initialized tith concepts of elementary set 
theory, it conjectured concepts in elerencary 
aumhtr theory, euch as “add.” “multiply” (by four 
dietlact paths!), *primes,” the unique 
fectorlution theorem, and l concept l imllar to 
prima‘ but previouely not much studied called 
%exlmally divlelble numbers.” 

3.5.2 HOLCEN: planning experimaate in molecular 
genetics 

UOLGW a collaboration with the Stanford 
Genetics Depertmenc, is wrk La progress. 
HOLCEN’e caek le to provide intelligent advice to 
a molecular geneticiet on the planning of 
experimmcs involving the manipulation of DNA. The 
geneticist hae various kinds of laboratory 
technique6 available for changing DNA material 
(cute. joins, insertions, deletione, and so on); 
techniques for determining the biological 
coneequencee of the changes; various instruments 
for meeeurlng effects; various chemical methods 
for inducing, facilitating. or Inhibiting changes; 
end many other’toole. 

NLGEN will offer planning aeelatance in 
organizing and sequencing such tooie to accomplish 
an experimental goal. In l dditioa HOIXEN will 
check ueer-provided experiment plans for 
fceeiblllt~; and its knovledge baee will be a 
repository for the rapidly expanding knowledge of 
this specialty, available by interrogation. 

Currant efforts to tngiMSr a knouledgc-base 
management eymtes for HOLGEN are described by 
Kertin et al la a paper In these proceedings. This 
aubeyetem uses and l xteude the techniques of the 
TEIRESIAS system diecueeed earlier. 

In HOLCEN the probIeo of integration of many 
divcree eourcee of knowledge is central since the 
essence of the experiment planning process is the 
successful merging of biological, 8tnetiC, 
chemical, topological, and inetrumcnt knovlcdge. 
In MOUXN the problem of rtprtaenting processes is 
also brought into focus since the expert’s 
knowledge of txperlmmcel strategies -- proto- 
plane - wet also be represtated and put LO USC. 

3.5.3 cR=ALIs: fnftrr%nR DrGtein StrUCtUre fKOm 

electron density maos 

CRYSALE, too, is uork in progress. Its task 
is to hypothesize the Structure of a protein from 
a map of electron density that is derived from x- 
ray crystallographic data. The map is three- 
dimensional. and the contour information is crude 
and highly ambiguous. Interpretation is guided 
and eupporttd by auxiliary information, of which 
the amino acid sequence of the protein’s backbone 
is the moat important. Density map interpretation 
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